Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Medical Journal ; (24): 237-241, 2011.
Article in English | WPRIM | ID: wpr-321462

ABSTRACT

<p><b>BACKGROUND</b>Von Hippel-Lindau (VHL) syndrome is an autosomal dominant familial cancer syndrome predisposing the affected individuals to multiple tumours in various organs. The genetic basis of VHL in Southern Chinese is largely unknown. In this study, we characterized the mutation spectrum of VHL in nine unrelated Southern Chinese families.</p><p><b>METHODS</b>Nine probands with clinical features of VHL, two symptomatic and eight asymptomatic family members were included in this study. Prenatal diagnosis was performed twice for one proband. Two probands had only isolated bilateral phaeochromocytoma. The VHL gene was screened for mutations by polymerase chain reaction, direct sequencing and multiplex ligation-dependent probe amplification (MLPA).</p><p><b>RESULTS</b>The nine probands and the two symptomatic family members carried heterozygous germline mutations. Eight different VHL mutations were identified in the nine probands. One splicing mutation, NM_000551.2: c.463+1G > T, was novel. The other seven VHL mutations, c.233A > G [p.Asn78Ser], c.239G > T [p.Ser80Ile], c.319C > G [p.Arg107Gly], c.481C > T [p.Arg161X], c.482G > A [p.Arg161Gln], c.499C > T [p.Arg167Trp] and an exon 2 deletion, had been previously reported. Three asymptomatic family members were positive for the mutation and the other five tested negative. In prenatal diagnosis, the fetuses were positive for the mutation.</p><p><b>CONCLUSIONS</b>Genetic analysis could accurately confirm VHL syndrome in patients with isolated tumours such as sporadic phaeochromocytoma or epididymal papillary cystadenoma. Mutation detection in asymptomatic family members allows regular tumour surveillance and early intervention to improve their prognosis. DNA-based diagnosis can have an important impact on clinical management for VHL families.</p>


Subject(s)
Humans , Asian People , DNA Mutational Analysis , Polymerase Chain Reaction , Sequence Analysis, DNA , Von Hippel-Lindau Tumor Suppressor Protein , Genetics , von Hippel-Lindau Disease , Genetics
2.
Chinese Medical Journal ; (24): 753-758, 2002.
Article in English | WPRIM | ID: wpr-340421

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the role of a potential diabetes-related mitochondrial region, which includes two previously reported mutations, 3243A-->G and 3316G-->A, in Chinese patients with adult-onset type 2 diabetes.</p><p><b>METHODS</b>A total of 277 patients and 241 normal subjects were recruited for the study. Mitochondrial nt 3116 - 3353, which spans the 16S rRNA, tRNA(leu(UUR)) and the NADH dehydrogenase 1 gene, were detected using polymerase chain reaction (PCR), direct DNA sequencing, PCR-restriction fragment length polymorphism and allele-specific PCR. Variants were analyzed by two-tailed Fisher exact test. The function of the variants in 16S rRNA were predicted for minimal free energy secondary structures by RNA folding software mfold version 3.</p><p><b>RESULTS</b>Four homoplasmic nucleotide substitutions were observed, 3200T-->C, 3206C-->T, 3290T-->C and 3316G-->A. Only the 3200T-->C mutation is present in the diabetic population and absent in the control population. No statistically significant associations were found between the other three variants and type 2 diabetes. The 3200T-->C and 3206C-->T nucleotide substitutions located in 16S rRNA are novel variants. The 3200T-->C caused a great alteration in the minimal free energy secondary structure model while the 3206C-->T altered normal 16S rRNA structure little.</p><p><b>CONCLUSIONS</b>The results suggest that the 3200T-->C mutation is linked to the development of type 2 diabetes, but that the other observed mutations are neutral. In contrast to the Japanese studies, the 3316G-->A does not appear to be related to type 2 diabetes.</p>


Subject(s)
Aged , Humans , Middle Aged , Age of Onset , Alleles , Base Sequence , DNA Mutational Analysis , DNA, Mitochondrial , Chemistry , Genetics , Diabetes Mellitus, Type 2 , Genetics , Models, Molecular , Nucleic Acid Conformation , Point Mutation , Polymerase Chain Reaction , Methods , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S , Chemistry , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL